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Abstract—This paper focuses on molecular communication (MC)
systems where the signaling molecules may participate in a reversible
bimolecular reaction in the channel. The motivation for studying
these MC systems is that they can realize the concept of constructive
and destructive signal superposition, which leads to favorable
properties such as inter-symbol interference (ISI) reduction and
avoiding environmental contamination due to continuous release of
molecules into the channel. This work first derives the maximum
likelihood (ML) detector for a binary MC system with reactive
signaling molecules under the assumption that the detector has
perfect knowledge of the ISI. The performance of this genie-aided
ML detector yields an upper bound on the performance of any
practical detector. In addition, two suboptimal detectors of different
complexity are proposed. The proposed ML detector as well as
one of the suboptimal detectors require the channel response (CR)
of the considered MC system. Moreover, the CR is needed for
the performance evaluation of all proposed detectors. However,
analyzing MC with reactive signaling is challenging since the
underlying partial differential equations that describe the reaction-
diffusion mechanism are coupled and non-linear. Therefore, an
algorithm is developed in this paper for efficient computation of
the CR to any arbitrary transmit symbol sequence. The accuracy of
this algorithm is validated via particle-based simulation. Simulation
results using the developed CR algorithm show that the performance
of the proposed suboptimal detectors can approach that of the genie-
aided ML detector. Moreover, these results show that MC systems
with reactive signaling have superior performance relative to those
with non-reactive signaling due to the reduction of ISI enabled by
the chemical reactions.

I. INTRODUCTION

Recent advances in biology, nanotechnology, and

medicine have given rise to the need for communication

in nano/micrometer scale dimensions [1]. In nature, a common

strategy for communication between nano/microscale entities

such as bacteria, cells, and organelles (i.e., components of

cells) is diffusive molecular communication (MC) [2]. In

contrast to conventional wireless communication systems that

encode data into electromagnetic waves, MC systems embed

data in the characteristics of signaling molecules such as their

type and concentration. Therefore, diffusive MC has been

considered as a bio-inspired approach for communication

between small-scale nodes for applications where conventional

wireless communication may be inefficient or infeasible.

One characteristic of MC is that the receiver always observes

a constructive superposition of the number of molecules released

in previous symbol intervals or by different transmitters since the

numbers of molecules cannot be negative. This feature leads to

several undesirable effects. First, many concepts in conventional

communications that rely on both constructive and destructive

superposition of signals, such as precoding, beamforming, and or-

thogonal sequences, are not applicable in MC. Second, the release

of signaling molecules in consecutive symbol intervals introduces

significant inter-symbol interference (ISI) as the channel impulse

response of MC channels is heavy-tailed. Third, if molecules are

continuously released, particularly into a bounded environment,

the concentration of the signaling molecules increases over time

and contaminates the environment.

One solution to cope with these challenges is to use enzymes

to degrade the signaling molecules in the environment [3]. It has

been shown in [3] that ISI is significantly reduced if enzymes are

uniformly present in the environment. However, having uniformly

distributed enzymes in the environment has two main drawbacks.

First, degradation of the signaling molecules via enzymes cannot

be controlled, which may hurt performance. Second, the ISI re-

duction comes at the expense of reducing the peak concentration

of the signaling molecules observed at the receiver. In [4], the

authors proposed to employ acids and bases for signaling. This

MC system has the advantage that the release of the molecules

can be controlled by the transmitter and acids and bases can react

to cancel each other out. Note that the reaction of an acid and

a base produces water and salt, and hence the contamination of

the environment by signaling molecules is avoided. Moreover, the

use of acids and bases implies the destructive and constructive

superposition of signaling molecules in the channel (not at the

receiver) which can be exploited to reduce ISI. In fact, the

effectiveness of this reactive signaling for ISI reduction was

experimentally verified in [5]. These advantages of the MC system

in [4], [5] motivate us to consider MC systems with reactive

signaling molecules in this paper.

The main challenge in analyzing MC with reactive signaling

is that the underlying partial differential equations (PDEs) that

describe the reaction-diffusion mechanism are coupled and non-

linear. A closed-form solution to these equations has not yet

been found, which had led to various approximations [6]. For

instance, in [3], the spatial and temporal distribution of the

enzyme concentration was assumed to be constant to obtain an

approximate solution. However, for MC systems in which the

transmitter releases reactive signaling molecules into the channel,

the concentrations of the molecules are temporally and spatially

non-uniform and hence the constant distribution assumption does

not hold. In the absence of closed-form solutions, numerical

methods are commonly used to solve reaction-diffusion equations

in the chemistry and physics literature [7]. This approach was

applied to MCs in [4] where the authors employed a finite

difference method (FDM) to solve the reaction-diffusion equation

for a one-dimensional environment. Another approach to compute

the expected concentrations of molecules is to average many

realizations of concentrations obtained via a stochastic reaction-

diffusion simulation [8]–[10]. However, the computational com-

plexity of these numerical and simulation methods is very high. In

[11], data is encoded in the concentration difference of two types

of molecules and it is shown that assuming identical diffusion

coefficients for both types of signaling molecules, the resulting

PDE for the concentration difference is linear. However, the

statistical model for the difference of the observed molecules is

still a function of the concentrations of both types of molecules.

In this paper, we consider a binary MC system that em-

ploys two types of molecules for signaling where the signaling

molecules may participate in a reversible bimolecular reaction,

such as the acid and base reaction in [4]. The considered



reversible bimolecular reaction involves two reactions with dif-

ferent rates, namely the reaction of two reactant molecules that

yields a product molecule and the decomposition of this product

molecule into the two reactant molecules. Moreover, we assume

an unbounded environment and a passive receiver for simplicity.

For this system, we first derive a genie-aided maximum likelihood

(ML) detector which assumes perfect knowledge of previous

symbols. We also propose two suboptimal detectors with different

complexities. The proposed ML detector and one of the subopti-

mal detectors require computation of the channel response (CR)

of the considered MC system. Moreover, the CR is needed for

the performance evaluation of all proposed detectors. The CR is

complicated by the non-linearity that arises due to the bimolecular

reaction, hence it must be characterized for all possible sequences

of molecules released by the transmitter into the channel. To

address the complexity of this characterization, we develop an

algorithm for efficient computation of the CR of the considered

MC system. This algorithm is faster than the numerical methods

that discretize both space and time since it efficiently exploits

the simplifying characteristics of an unbounded environment

and a passive receiver, and computes the concentrations of

the molecules analytically in each time step. The accuracy of

the proposed algorithm for CR computation is validated using

particle-based simulation. Moreover, we show that unlike the

MC system in [3], ISI is reduced in the considered MC system

without reducing the peak of the CR. Finally, simulations using

the proposed CR algorithm show superior bit error rate (BER)

performance of MC systems with reactive signaling compared to

those with non-reactive signaling due to reduced ISI.

II. SYSTEM MODEL

The considered MC system consists of a transmitter, a receiver,

and a channel which are introduced in detail in the following, see

Fig. 1.

A. Transmitter

We assume a point-source transmitter located at the origin of

the Cartesian coordinate system, i.e., (0, 0, 0). The transmitter

employs two types of molecules for signaling, namely type-A
and type-B molecules. In particular, the transmitter releases N tx

i

type-i molecules into the channel at time instances t ∈ Ti, i ∈
{A,B}. By properly defining Ti, different modulation schemes

can be accommodated, e.g., molecule shift-keying (MoSK) and

pulse position modulation (PPM). In this paper, we focus on the

following modulation scheme. Let s[k] ∈ {0, 1} denote the binary

symbol at the k-th symbol interval. For binary zero, s[k] = 0,

the transmitter releases N tx
A type-A molecules at the beginning

of the symbol interval and N tx
B type-B molecules at time τ0

seconds after the start of the symbol interval. In a similar manner,

for binary one, s[k] = 1, the transmitter releases N tx
B type-B

molecules at the beginning of the symbol interval and N tx
A type-

A molecules at time τ1 seconds after the start of the symbol

interval. In particular, we choose τ0 (τ1) as the peak of the CR

assuming instantaneous release of only N tx
A (N tx

B ) type-A (type-

B) molecules at t = 0. For this modulation scheme, we obtain

TA =
{
t|t = (k − 1)T symb + s[k]τ1, ∀k

}
(1a)

TB =
{
t|t = (k − 1)T symb + (1− s[k])τ0, ∀k

}
, (1b)

where T symb denotes the length of a symbol interval. The

advantage of the above modulation scheme and the choice of

τi in reactive MC systems is that, unlike the MC system in [3],

where the reduction of ISI comes at the expense of reducing the
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Fig. 1. Schematic illustration of the considered MC system with reactive
signaling.

peak of the CR, here, the transmitter releases the second type of

molecule only when the receiver has already seen the expected

peak concentration of the first type of molecule. Hence, the

second release does not have an impact on the peak concentration

of the first release.

B. Channel

We assume an unbounded three-dimensional environment. The

type-A and type-B molecules released by the transmitter diffuse

in the environment with diffusion coefficients DA and DB ,

respectively, and may participate in the following biomolecular

reaction

A+B
kf

�
kb

∅, (2)

where kf and kb denote the forward reaction rate in

molecule−1m3s−1 and backward reaction rate in s−1, respec-

tively. Moreover, symbol ∅ denotes chemical species which are of

no interest for communication. Note that (2) includes the reactions

considered in [4], [11]. Moreover, if type-B molecules represent

enzymes and only type-A molecules are used for signaling,

(2) includes the degradation reaction in [3] when the enzyme

concentration is constant everywhere and is much larger than the

concentration of the type-A molecules such that the reaction in

(2) does not change the enzyme concentration.

C. Receiver

For simplicity, we assume a passive receiver at distance d
centered at point d = (d, 0, 0) which is able to count the number

of type-A and type-B molecules within its volume. Let ȳA(t)
and ȳB(t) denote the expected numbers of type-A and type-B
molecules observed at the receiver at time t, respectively, due

to release of a known sequence of numbers of molecules by the

transmitter. We refer to ȳi(t), i ∈ {A,B}, as the CR of the

considered MC system. Note that depending on the length of

the symbol interval, the receiver may observe molecules released

by the transmitter in multiple previous symbol intervals, i.e., ISI

may exist. Let L be the length of the channel memory1 and

s ∈ {0, 1}L−1 denote the vector of L− 1 previously transmitted

symbols which is referred to as the ISI-causing sequence2.

Therefore, given s and s, the number of type-i molecules counted

at the receiver at sample time ts is modelled as

yi ∼ P
(
sȳ

(1)
i (s) + (1− s)ȳ

(0)
i (s)

)
, i ∈ {A,B}, (3)

1Theoretically, the memory length of the considered MC channel is infinite;
however, from a practical point-of-view, the effect of the previous symbols
becomes negligible after several symbol intervals.

2For notational simplicity, we drop the symbol index k in the remainder of the
paper.



where P(λ) denotes a Poisson random variable (RV) with mean

λ. Moreover, ȳ
(s)
i (s) is ȳi(ts) under the condition that the symbol

in the current symbol interval is s ∈ {0, 1} and the ISI-causing

sequence is s ∈ {0, 1}L−1. We note that the Poisson model in

(3) is an approximation which has been shown to be accurate

for the reaction-diffusion processes in the chemistry and physics

literature [12], [13]. In Section V, we will validate the Poisson

model in (3) using the particle-based simulator developed in

Appendix A.

Note that due to the reaction process, the CR of the considered

MC system ȳi(t) is a non-linear function of the transmitted

data symbols. Therefore, we cannot simply compute the CR for

one shot transmission and use convolution to capture the effect

of the ISI [14]. In particular, to fully characterize the average

behavior of the system, one has to compute the CR for both

symbol hypotheses s ∈ {0, 1} and all 2L−1 possible ISI-causing

sequences. In Section III, we derive the optimal genie-aided ML

detector and two suboptimal detectors for this MC system. Note

that the CR is needed for both the ML and one of the suboptimal

detectors, and is also required for performance evaluation of all

the proposed detectors. Therefore, in Section IV, we derive an

efficient numerical algorithm for computation of the CR for any

arbitrary sequence of transmitted symbols.

III. DETECTION METHODS FOR BINARY MODULATION

In this section, we derive the genie-aided ML detector for

binary modulation assuming the ISI is known. This provides

an upper bound on performance for any practical detector.

Subsequently, we propose two suboptimal practical detectors of

different complexity.

A. Optimal Genie-Aided ML Detector

In the following, we focus on symbol-by-symbol detection. We

consider a genie-aided ML detector that assumes perfect knowl-

edge of the ISI-causing sequence is available at each symbol

interval. In particular, the genie-aided ML detection problem for

the considered transmission scheme is given by

ŝml= argmax
s∈{0,1}

Pr(yA, yB|s, s)

(a)
= argmax

s∈{0,1}

fP(yA|s, s)fP(yB |s, s), (4)

where Pr(·) denotes probability and fP(x) = λxe−λ

x! is the

probability mass function (PMF) of a Poisson RV with mean λ.

Equality (a) follows from the fact that conditioned on ȳ
(s)
i (s)

and (s, s), RVs yA and yB are independent. The optimal detector

is given in the following proposition.

Proposition 1: The genie-aided ML detector as a solution of

(4) is given by

ŝml =

{
0, if yA ≥ α(s)yB + β(s)

1, otherwise,
(5)

where α(s) = 1
γ(s) log

(
ȳ
(1)
B (s)

ȳ
(0)
B (s)

)
, β(s) = 1

γ(s)

(
ȳ
(0)
A (s)+ ȳ

(0)
B (s)−

ȳ
(1)
A (s)− ȳ

(1)
B (s)

)
, and γ(s) = log

(
ȳ
(0)
A

(s)

ȳ
(1)
A

(s)

)
.

Proof: The proof is given in Appendix B.

Note that the detector in Proposition 1 requires the CR ȳ
(s)
i (s)

for every sequence (s, s). Therefore, in Section IV, we derive an

algorithm for efficient computation of the CR.

B. Suboptimal Detectors

In the following, we propose two suboptimal detectors.

1) Suboptimal Detector 1: The genie-aided detector in Propo-

sition 1 assumes perfect knowledge of the ISI-causing sequence

which is not available in practice. However, the receiver can

employ the detector in Proposition 1 and use its estimates of

the previous symbols as the ISI-causing sequence. This leads to

a suboptimal detector which we refer to as “ML detector with

estimated ISI”. We show in Section V that the performance of the

ML detector with estimated ISI is very close to the performance

upper bound provided by the genie-aided ML detector.

2) Suboptimal Detector 2: Recall that the main motivation for

introducing the adopted modulation scheme was to reduce ISI.

Assuming that ISI is sufficiently suppressed and that DA = DB

and NA = NB hold, we propose the following simple detector

ŝ =

{
0, if yA ≥ yB

1, otherwise.
(6)

The suboptimal detector in (6) does not need knowledge of

the CR which makes it suitable for MC systems with limited

computational capabilities.

IV. CHANNEL RESPONSE COMPUTATION

FOR MC SYSTEMS WITH REACTIVE SIGNALING

In this section, we first formally present the problem statement

for CR computation. Next, we derive a numerical algorithm for

computing the CR and discuss its complexity with respect to the

available methods for CR computation.

A. Problem Statement

Let CA(r, t) and CB(r, t) denote the concentration of type-

A and type-B molecules at point r = (x, y, z) and time t.
Considering a passive receiver, ȳi(t) is obtained as

ȳi(t) =

∫∫∫
r∈Vrx

Ci(r, t)dr, i ∈ {A,B}, (7)

where Vrx is the set of points within the volume of the receiver.

Concentrations CA(r, t) and CB(r, t) can be found using the

following reaction-diffusion equations [4], [8]

∂CA(r, t)

∂t
= DA∇2CA(r, t)− kfCA(r, t)CB(r, t) + kb (8a)

∂CB(r, t)

∂t
= DB∇2CB(r, t)− kfCA(r, t)CB(r, t) + kb, (8b)

where ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . As stated earlier, the general

reaction-diffusion equations in (8) have not yet been solved in

closed form. The difficulty mainly arises from the coupling of the

two equations and the non-linear term kfCA(r, t)CB(r, t). Note

that even if we assume that one of the variables, e.g. CB(r, t),
is fixed, it is still challenging to solve (8a) in terms of CA(r, t).
Therefore, in the following, we derive a numerical method to

solve (8) in a computationally efficient manner. This is achieved

by fully exploiting the simplifying characteristics of our system

model.

B. Derivation of the CR

Let us assume that time is divided into a series of small

intervals of length Δt. The main idea behind the proposed

approach for computing the CR is to find the concentrations at the

end of each time interval given the concentrations at the beginning

of the time interval while exploiting the condition Δt → 0. In

particular, from the reaction diffusion equations in (8), we have

Ci(r, t+Δt) = Ci(r, t) +Gi(r, t)



+

∫ t+Δt

t̃=t

Di∇2Ci(r, t̃)dt̃︸ ︷︷ ︸
ΔCdiff

i (r,t)

+

∫ t+Δt

t̃=t

(
−kfCA(r, t̃)CB(r, t̃) + kb

)
dt̃︸ ︷︷ ︸

ΔCreact
i (r,t)

, (9)

where Gi(r, t) =
∑

ti∈Ti
N tx

i δ(r, t − ti) represents the concen-

tration of type-i molecules that are released by the transmitter

into the channel where δ(r, t) = δ(x)δ(y)δ(z)δ(t) and δ(·) is the

Dirac delta function. Moreover, ΔCdiff
i (r, t) and ΔCreact

i (r, t)
are concentration changes due to diffusion and reaction, re-

spectively. The following proposition specifies Ci(r, t+Δt) for

Δt → 0.

Proposition 2: For the MC system under consideration, as-

suming Δt → 0 and that the release times t ∈ Ti are integer

multiplies of Δt, we obtain

Ci(r, t+Δt) = Gi(r, t+Δt) + C̄diff
i (r, t) + ΔC̄react

i (r, t),(10)

where

C̄diff
i (r, t)=

1

(4πDiΔt)
3
2

∫∫∫
r̃

Ci(r̃, t)e
− ‖r−r̃‖2

4DiΔt dr̃ (11)

ΔC̄react
i (r, t)= −

(
kfCA(r, t)CB(r, t) + kb

)
Δt. (12)

Proof: The proof is given in Appendix C.

Note that the key assumptions that we made for (10) to hold

are the unbounded environment and the passive receiver such that

no boundary conditions are imposed. The main computational

complexity originates from (11) since for each update, a three-

dimensional integral has to be evaluated for each point of space

r ∈ R
3 where R is the set of real numbers. Nevertheless, for

the commonly adopted assumption of a point-source transmitter

with impulsive release [3], [4], [11], the computation of CA(r, t)
and CB(r, t) can be significantly simplified using the following

corollary.

Corollary 1: Assuming impulsive release from a point-source

transmitter located at the origin of the Cartesian coordinates, an

unbounded environment, and a passive receiver, the concentra-

tions of the molecules are only functions of variable r � ‖r‖. In

this case, assuming Δt → 0, we obtain

Ci(r, t+Δt) =
∑
ti∈Ti

N tx
i δ(r, t+Δt− ti)

−kfCA(r, t)CB(r, t)Δt+ kbΔt

+
1√

4πDiΔt

∫ ∞

r̃=0

Ci(r̃, t)Wi(r, r̃)dr̃, (13)

where Wi(r, r̃) is given by

Wi(r, r̃)=
2r̃

r
exp

(
− r̃2 + r2

4DiΔt

)
sinh

(
rr̃

2DiΔt

)
. (14)

Proof: The proof is given in Appendix D.

Note that the three-dimensional integral in (11) is simplified to

a one-dimensional integral in the last term of (13) which has

to be evaluated for a one-dimensional space variable r ∈ R.

In addition, the term Wi(r, r̃) in the integral does not depend

on the concentrations. Hence, we can evaluate it offline and use

it for online concentration updates. In other words, the integral

in (13) simplifies to summation and multiplication operations.

Algorithm 1 summarizes the simulation steps for CR computation

using Corollary 1.

C. Discussion on Complexity

In the following, we compare the computational complexity

of the proposed algorithm and the statistical model with the

conventional numerical methods and particle-based simulation.

Algorithm 1 Computation of CR

1: initialize: t = 0, Δt, Tmax, Ti, and Ci(r, 0).
2: while t ≤ Tmax do

3: Update t with t+Δt.
4: Compute CA(r, t) and CB(r, t) from (13).

5: end while

6: Return ȳA(t) and ȳB(t) from (7) as the CR.

1) Conventional Numerical Methods: Most numerical meth-

ods in the literature rely on discretization of space and time to

solve the reaction-diffusion equations in (8) [4], [7]. For instance,

for FDM, time and space are discretized into small intervals to

approximate the differential operators in (8). The advantage of

this approach is its universality as it can be applied to differ-

ent PDEs. However, for the approximations of the differential

operators to be accurate, the adopted step size should be very

small [7]. Compared to these methods, the proposed approach

in Algorithm 1 is a hybrid method where time is discretized;

however, the problem is solved analytically with respect to the

space variables. Moreover, the proposed approach is not as

sensitive to the size of the time step length Δt as FDM since

we do not approximate any differential operator. Therefore, the

proposed method is much faster than pure numerical methods

such as FDM.

2) Particle-based Simulation: Another approach to obtain the

CR is to employ stochastic reaction-diffusion simulations to eval-

uate different realizations of the concentrations of the molecules

at each point in space and time and average the resulting

concentrations to obtain the expected concentrations. In addition,

these realizations can be used to determine the statistics of the

concentrations [8]–[10]. In Section V, we show the exact statistics

of the number of molecules observed at the receiver obtained via

particle-based simulation. A corresponding simulator is developed

for the MC system considered in this paper and is explained in

detail in Appendix A. Similar to the general numerical methods,

the advantage of particle-based simulation is its universality as

it can be also applied to different MC systems. However, it is

very inefficient in terms of computational complexity, especially

since for typical MC systems, the number of molecules whose

positions have to be tracked in a particle-based simulator can be

extremely large. Moreover, the particle-based simulator has to be

run many times in order to obtain a sufficient number of samples

to develop a statistical model. On the contrary, the complexity

of Algorithm 1 does not scale with the number of molecules.

Moreover, we show in Section V that the Poisson distribution

with a mean, which is a non-linear function of the ISI-causing

sequence and obtained with Algorithm 1, can accurately model

the statistics of the number of molecules observed at the receiver.

V. SIMULATION RESULTS

In this section, we evaluate the accuracy of the proposed CR

computation algorithm and the Poisson statistical model with

non-linear ISI and determine the performance of the proposed

detectors. Unless stated otherwise, the default values for the

system parameters are given in Table I. The time step size is

Δt = 1μs in Algorithm 1 and the particle-based simulator in

Appendix A, respectively. Moreover, the simulation results shown

in Figs. 2 and 3 are obtained by running the particle-based

simulator in Appendix A 104 times for time interval [0, Tmax]
where Tmax = 60μs.

In Fig. 2, we plot the expected number of molecules observed

at the receiver, i.e., CR, for three consecutive symbol intervals



TABLE I
DEFAULT VALUES OF THE SYSTEM PARAMETERS [3], [4].

Variable Definition Value

N tx
A , N tx

B Number of released molecules 5× 103 molecules

d Distance between transmitter and receiver 250 nm

DA, DB Diffusion coefficient 10−9 m2 · s−1

kf Forward reaction rate 10−17 molecule−1m3s−1

kb Backward reaction rate 1017 molecule−1m3s−1

r Receiver radius 50 nm

T symb Symbol duration 20 μs

B mol. with reaction (particle-based simulation)

A mol. with reaction (particle-based simulation)

B mol. with reaction (proposed numerical)

A mol. with reaction (proposed numerical)

B mol. w/o. reaction (analytical)

A mol. w/o. reaction (analytical)

ȳ
i
(t
)

Time (μs)

0 10 20 30 40 50 60
0

5

10

15
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Fig. 2. CR, ȳA(t) and ȳB(t), for sequence [0, 1, 0]. The dotted line shows the
start of a new symbol interval.

and data sequence [0, 1, 0]. For non-reactive signaling molecules,

we show analytical results from [14, Eq. (1) and (2)], and for

reactive signaling molecules, we show numerical results obtained

with Algorithm 1 and simulation results generated with the

particle-based simulator introduced in Appendix A. From Fig. 2,

we observe a perfect agreement between the numerical and

simulation results. For the first symbol, where ISI does not exist,

the peak concentration of type-A molecules is identical for both

reactive and non-reactive signaling whereas the contribution of

ISI observed in the next symbol interval is much higher for

the non-reactive case compared to reactive signaling. Moreover,

as can be seen from Fig. 2, for non-reactive signaling, the

concentration of the molecules increases over time. On the

contrary, for reactive signaling, the peak concentration of the

received molecules remains almost constant. This is due to the

fact that signaling molecules participate in a degradation reaction

and cancel each other out. Although we assumed an unbounded

simulation environment here, we expect that degradation via

reactive molecules becomes even more important in a bounded

environment where the accumulation of molecules can signifi-

cantly contaminate the channel.

Next, we evaluate the accuracy of the statistical model intro-

duced in (3). We assume that the sampling time is ts = τA = τB .

We choose again data sequence [0, 1, 0] whose corresponding CR

is plotted in Fig. 2. Fig. 3 shows the histogram of the number of

molecules observed at the receiver, which is obtained via particle-

based simulation, i.e., the “exact distribution”, and the proposed

Poisson model in (3). The blue, red, and green curves correspond

to the observations in the first, second, and third symbol interval,

respectively. Note that from Fig. 2, we observe that yA has a

small mean (less than 5) in the second symbol interval and a

large mean (more than 10) in the first and third symbol intervals.

Similarly, yB has a small mean in the first and third symbol

intervals and a large mean in the second symbol interval. Fig. 3

includes two subplots that focus on the small means (left-hand

side subplot) and the large means (right-hand side subplot). As

B mol. (Particle-based Simulation)

A mol. (Particle-based Simulation)

B mol. (Poisson with non-linear ISI)

A mol. (Poisson with non-linear ISI)

P
r(
y
i
)
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Fig. 3. PMFs of observation yA and yB for sequence [0, 1, 0] and MCs with
reactive signaling molecules. The blue, red, and green curves correspond to the
observations in the first, second, and third symbol interval, respectively.

can be seen from Fig. 3, the Poisson model with non-linear

ISI can accurately model the histograms obtained from particle-

based simulation for both small and large concentration means.

This validates the Poisson model for MC systems with reactive

signaling and is in line with the results reported in the chemistry

and physics literature [12], [13].

Finally, we compare the performance of the reactive MC

system proposed in this work with that of MC systems with no

chemical reactions. Particularly, the following two MC systems

with non-reactive molecules are considered. The first system uses

the same modulation scheme as introduced in Section II-A but

with no chemical reactions. This was originally proposed in [15]

where the benefit of employing two types of molecules is the

resulting diversity. Second, we consider a system model with only

a single type of molecule and on-off keying (OOK) modulation.

This system has been used in many previous works [1], and here

we use the detection algorithm developed in [16, Eq. (6)] for

calculating the BER. For the simulation results, we consider 105

realizations of blocks of 10 symbols and use L = 3 for the

proposed ML detector. We emphasize that for simulation of yA
and yB , the memory of all previous symbol intervals is considered

whereas for the ML detector, only a memory length of size three

is assumed for simplicity.

Fig. 4 shows the BER vs. the number of released molecules,

N tx
A = N tx

B � N tx, for the genie-aided lower bound from

Proposition 1, the ML detector with estimated ISI, and the

suboptimal detector in (6). We observe from Fig. 4 that the MC

system with reactive signaling molecules has a superior perfor-

mance compared to the MC system with non-reactive signaling

molecules for all considered detectors. This is due to the fact that

for the adopted symbol duration, ISI is sufficiently reduced with

reactive signaling whereas for non-reactive signaling, the ISI is

severe, cf. Fig. 2. Moreover, even non-reactive signaling with two

types of molecules outperforms OOK signaling with one type of

molecule because of the diversity gain that observing two types

of molecules provides. Furthermore, Fig. 4 shows that the ML

detector with estimated ISI performs very close to the genie-

aided lower bound. Finally, the proposed suboptimal detector in

(6) performs well without requiring knowledge of the CR which

makes it suitable for MC systems with limited computational

capabilities.
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VI. CONCLUSIONS

We studied a binary MC system with reactive signaling

molecules and derived an optimal genie-aided ML detector and

two suboptimal detectors for this system. Since the CR was

needed for the genie-aided ML detector and one of the suboptimal

detectors as well as for the performance evaluation of all three

detectors, we developed a numerical algorithm for efficient CR

computation. The accuracy of this algorithm has been vali-

dated via particle-based simulations. Moreover, simulation results

showed the superiority in performance of reactive systems over

non-reactive systems due to efficient ISI reduction and revealed

the similar performance of the proposed suboptimal detectors

compared to the genie-aided detector. As part of future work, we

will evaluate the accuracy of this model and the performance of

the proposed detection algorithms with an experimental platform.

APPENDIX A

For particle-based simulation, the positions of individual par-

ticles are tracked during the simulation time. In the following,

we explain how we update the position of the molecules for the

considered release, diffusion, and reaction mechanisms.

1) Transmitter Release: Let ri(t) = (xi(t), yi(t), zi(t)) denote

the coordinate of a specific type-i molecule at time instance t. For

instantaneous release from a point-source transmitter, we simply

place N tx
i type-i molecules at position ri(t) = (0, 0, 0) at any

release time instant t ∈ Ti.
2) Diffusion: According to Brownian dynamics, the position

of each molecule at time instance t+Δt is updated as [8]

ri(t+Δt) = ri(t) +
√
2DiΔt

(
Δxi,Δyi,Δzi), (15)

where Δxi,Δyi,Δzi ∼ N (0, 1) and N (μ, σ2) denotes a normal

RV with mean μ and variance σ2.

3) Forward Reaction: The forward reaction in (2), i.e., A +

B
kf→ ∅, is a second order bimolecular reaction. The fundamental

rule for stochastic simulation of these reactions is based on the

fact that a reaction occurs within interval [t, t + Δt] when the

reactant molecules are within a certain binding radius ρb [8].

Therefore, in our simulation, we can simply remove one type-

A and one type-B molecule if their distance is less than ρb.

Unfortunately, the exact value of ρb cannot be found analytically

in general and depends on reaction rate kf and the choice of Δt.

Nevertheless, for the two special cases of Δt → 0 and Δt → ∞,

the following simple relations are available [8, Eqs. (19) and (20)]

kf =

{
4πρb(DA +DB), if ρrms � ρb

4πρ3b/(3Δt), if ρrms  ρb
(16)

where ρrms =
√
2(DA +DB)Δt is the mutual root mean square

step length of type-A and type-B molecules. Using the simplified

formula for ρb in (16), we obtain equivalent conditions for

ρrms � ρb and ρrms  ρb as⎧⎨
⎩ρrms � ρb → Δt � k2

f

32π2(DA+DB)3

ρrms  ρb → Δt  9k2
f

128π2(DA+DB)3

(17)

In order to reduce the computational complexity, we choose Δt
sufficiently large such that condition ρrms  ρb holds.

4) Backward Reaction: The backward reaction in (2) is in

form of zeroth order reaction ∅
kb→ A + B. Suppose that the

simulation environment is a cube of volume V = L3. Moreover,

let RV n(t) denote the number of times that the backward reaction

occurs in a time interval [t, t+Δt]. Then, n(t) follows a Poisson

distribution [8]

n(t) = P
(
V kbΔt

)
. (18)

Here, we have to be careful about the positions of the type-A and

type-B molecules that are generated via the backward reaction.

In particular, if ρrms � ρb holds and we put these molecules on

the same location, then these molecules directly participate in the

forward reaction before they can diffuse away regardless of the

value of ρb. In order to avoid the automatic degradation of type-A
and type-B molecules, the type-A and type-B product molecules

are initially separated by a fixed distance which is larger than ρb
denoted by the unbinding radius ρu. Let l denote the center of

the cube of the simulation environment. Then, the zeroth order

reaction can be simulated by inserting each of the n(t) molecules

of type-i at random positions ri(t) obtained as [8]

rA(t)= l+ L
(
ΔxA,ΔyA,ΔzA

)
, (19a)

rB(t)= rA(t) + ρu
(
ΔxB ,ΔyB,ΔzB

)
, (19b)

where ΔxA,ΔyA,ΔzA ∼ U(−0.5, 0.5) and U(a, b) is an RV

uniformly distributed in interval [a, b]. Moreover, ΔxB ,ΔyB, and

ΔzB are any numbers satisfying Δx2
B + Δy2B + Δz2B = 1. On

the other hand, if ρrms  ρb holds and diffusion is simulated

after the backward reaction in the adopted simulator, it is very

likely that the molecules diffuse out of the binding radius after

one diffusion step. In this case, the value of the unbinding is not

important and without loss of generality, we can choose ρu = 0
which leads to rA(t) = rB(t).

APPENDIX B

The log likelihood ratio (LLR) for problem (4) can be written

as

LLR= log

(
fP(yA|s = 0, s)fP(yB|s = 0, s)

fP(yA|s = 1, s)fP(yB|s = 1, s)

)

= log

(
(ȳ

(0)
A (s))yAe−ȳ

(0)
A

(s)(ȳ
(0)
B (s))yBe−ȳ

(0)
B

(s)

(ȳ
(1)
A (s))yAe−ȳ

(1)
A (s)(ȳ

(1)
B (s))yBe−ȳ

(1)
B (s)

)

= yA log

(
ȳ
(0)
A (s)

ȳ
(1)
A (s)

)
− yB log

(
ȳ
(1)
B (s)

ȳ
(0)
B (s)

)

−ȳ
(0)
A (s)− ȳ

(0)
B (s) + ȳ

(1)
A (s) + ȳ

(1)
B (s). (20)



Due to the monotonicity of the logarithm, the ML problem in

(4) can be rewritten as LLR
s=0

�
s=1

0. Defining α(s) and β(s) as in

Proposition 1, we obtain (5) which concludes the proof.

APPENDIX C

In the following, we discuss the concentration changes due the

reaction and diffusion processes.

1) Reactions: Assuming Δt → 0, the concentration

Ci(r, t̃), t̃ ∈ (t, t+Δt], can be written as

Ci(r, t̃) = Ci(r, t) + εi(r, t̃), t̃ ∈ (t, t+Δt], (21)

where εi(r, t̃) is the concentration change due to the reaction and

diffusion processes at any time t̃ within the interval (t, t +Δt].
Let us define εmax

i (r, t) = maxt̃ εi(r, t̃), t̃ ∈ (t, t + Δt], and

εmin
i (r, t) = mint̃ εi(r, t̃), t̃ ∈ (t, t + Δt]. Assuming Δt → 0,

ΔCreact
i (r, t) defined in (9) is bounded as

ΔCreact
i (r, t)≤ ΔC̄react

i (r, t) + εmax
A (r, t)CB(r, t)Δt

+εmax
B (r, t)CA(r, t)Δt+ εmax

A (r, t)εmax
B (r, t)Δt

(a)
= ΔC̄react

i (r, t) + o(Δt) (22a)

ΔCreact
i (r, t)≥ ΔC̄react

i (r, t) + εmin
A (r, t)CB(r, t)Δt

+εmin
B (r, t)CA(r, t)Δt + εmin

A (r, t)εmin
B (r, t)Δt

(b)
= ΔC̄react

i (r, t) + o(Δt), (22b)

where o(·) represents the little-o notation, ΔC̄react
i (r, t) is given

by (12), and we used εmax
i (r, t) → 0 and εmin

i (r, t) → 0
as Δt → 0 for equalities (a) and (b), respectively. There-

fore, the concentration ΔCreact
i (r, t) can be approximated by

ΔC̄react
i (r, t) assuming Δt → 0.

2) Diffusion: With a similar argument as for the approx-

imation of ΔCreact
i (r, t), we can show that ΔCdiff

i (r, t) →
Di∇2Ci(r, t)Δt as Δt → 0 if ∇2Ci(r, t) is non-zero3. In other

words, ΔCdiff
i (r, t) is on the order of Δt. Using this result,

in the following, we provide an alternative approximation of

ΔCdiff
i (r, t) which does not involve the Laplace operator ∇2.

Assuming Δt → 0, the concentration Ci(r, t̃), t̃ ∈ (t, t + Δt],
can be written as

Ci(r, t̃) = Cdiff
i (r, t̃) + δi(r, t̃), t̃ ∈ (t, t+Δt], (23)

where Cdiff
i (r, t̃) is the concentration assuming reaction does

not occur within (t, t + Δt] and δi(r, t̃) models the concentra-

tion difference due to reaction processes. Assuming Δt → 0,

ΔCdiff
i (r, t) is given by

ΔCdiff
i (r, t) = ΔC̄diff

i (r, t) + o(Δt), (24)

where ΔC̄diff
i (r, t) = C̄diff

i (r, t) − Ci(r, t) and C̄diff
i (r, t) is the

concentration due to free diffusion without reaction which is

given by (11) [6, Chapter 1.7]. Since ΔCdiff
i (r, t) is on the order

of Δt, it can be approximated by C̄diff
i (r, t) assuming Δt → 0.

Substituting ΔC̄diff
i (r, t) = C̄diff

i (r, t) − Ci(r, t) and

ΔC̄react
i (r, t) for ΔCdiff

i (r, t) and ΔCreact
i (r, t) into (9), respec-

tively, yields the update rule in (10) and concludes the proof.

APPENDIX D

Because of the geometrical symmetry of the problem, the

concentration for the MC system under consideration is only

a function of r � ‖r‖. The simplification for Cdiff
i (r, t + Δt)

follows from transforming an integral from Cartesian coordinates

3Note that if ∇
2Ci(r, t) is zero, the overall impact of ΔCdiff

i
(r, t) is

negligible compared to ΔCreact

i
(r, t).

to spherical coordinates with variables r ≥ 0, φ ∈ [0, π], and

θ ∈ [0, 2π]. Moreover, without loss of generality, we consider

r = (0, 0, r) in order to simplify (11) as follows

Cdiff
i (r, t+Δt)

=
1

(4πDiΔt)3/2

∫∫∫
r̃

Ci(r̃, t) exp

(
−‖r̃‖2 + r2 − 2rz̃

4DiΔt

)
dr̃,

=
1

(4πDiΔt)3/2

∫ ∞

r̃=0

Ci(r̃, t)r̃
2 exp

(
− r̃2 + r2

4DiΔt

)

×
∫ π

φ̃=0

∫ 2π

θ̃=0

sin(φ̃) exp

(
rr̃ cos(φ̃)

2DiΔt

)
dθ̃dφ̃dr̃,

=
1√

4πDiΔt

∫ ∞

r̃=0

Ci(r̃, t)

×2r̃

r
exp

(
− r̃2 + r2

4DiΔt

)
sinh

(
rr̃

2DiΔt

)
dr̃, (25)

where we used the identity
∫ π

x=0 sin(x) exp(a cos(x))dx =
2 sinh(a)

a . Defining Wi(r, r̃) as in (14) leads to (13) and completes

the proof.

REFERENCES

[1] N. Farsad, H. Yilmaz, A. Eckford, C. Chae, and W. Guo, “A Comprehensive
Survey of Recent Advancements in Molecular Communication,” IEEE
Commun. Surveys Tutorials, vol. 18, no. 3, pp. 1887–1919, third quarter
2016.

[2] B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts,
and P. Walter, Essential Cell Biology. New York, NY: Garland Science,
4th ed., 2014.

[3] A. Noel, K. Cheung, and R. Schober, “Improving Receiver Performance
of Diffusive Molecular Communication with Enzymes,” IEEE Trans.
NanoBiosci., vol. 13, no. 1, pp. 31–43, Mar. 2014.

[4] N. Farsad and A. Goldsmith, “A Novel Molecular Communication System
Using Acids, Bases and Hydrogen Ions,” in Proc. IEEE SPAWC, Jul. 2016,
pp. 1–6.

[5] N. Farsad, D. Pan, and A. Goldsmith, “A Novel Experimental
Platform for In-Vessel Multi-Chemical Molecular Communications,”
Accepted for presentation in IEEE Globecom, 2017. [Online]. Available:
https://arxiv.org/abs/1704.04810

[6] L. Debnath, Nonlinear Partial Differential Equations for Scientists and

Engineers. Springer Science & Business Media, 2011.
[7] J. Lang, “Numerical Solution of Reaction-Diffusion Equations,” in Scientific

Computing in Chemical Engineering. Springer, 1996, pp. 136–141.
[8] S. S. Andrews and D. Bray, “Stochastic Simulation of Chemical Reactions

with Spatial Resolution and Single Molecule Detail,” Physical biology,
vol. 1, no. 3, p. 137, 2004.

[9] C. T. Chou, “Extended Master Equation Models for Molecular Communi-
cation Networks,” IEEE Trans. NanoBiosci., vol. 12, no. 2, pp. 79–92, Jun.
2013.

[10] A. Noel, K. C. Cheung, R. Schober, D. Makrakis, and A. Hafid, “Simulating
with AcCoRD: Actor-based Communication via Reaction-Diffusion,” Nano

Commun. Netw., vol. 11, pp. 44 – 75, 2017.
[11] R. Mosayebi, A. Gohari, M. Mirmohseni, and M. N. Kenari, “Type Based

Sign Modulation and its Application for ISI Mitigation in Molecular
Communication,” IEEE Trans. Commun., 2017.

[12] C. Gardiner and S. Chaturvedi, “The Poisson Representation. I. A New
Technique for Chemical Master Equations,” Journal of Statistical Physics,
vol. 17, no. 6, pp. 429–468, 1977.

[13] D. Schnoerr, R. Grima, and G. Sanguinetti, “Cox Process Representation and
Inference for Stochastic Reaction-Diffusion Processes,” Nature Commun.,
vol. 7, 2016.

[14] V. Jamali, A. Ahmadzadeh, C. Jardin, C. Sticht, and R. Schober, “Channel
Estimation for Diffusive Molecular Communications,” IEEE Trans. Com-
mun., vol. 64, no. 10, pp. 4238–4252, Oct. 2016.

[15] S. Wang, W. Guo, and M. D. McDonnell, “Transmit Pulse Shaping for
Molecular Communications,” in IEEE Infocom Workshops, Apr. 2014, pp.
209–210.

[16] V. Jamali, N. Farsad, R. Schober, and A. Goldsmith, “Non-Coherent
Multiple-Symbol Detection for Diffusive Molecular Communications,” in
Proc. ACM NanoCom, Sept. 2016.


